Basic and translational research

CONCISE REPORT

TGFβ receptor gene variants in systemic sclerosis-related pulmonary arterial hypertension: results from a multicentre EUSTAR study of European Caucasian patients

Eugénie Koumakis,1,2 Julien Wipff,1,2 Philippe Dieude,3 Barbara Ruiz,1 Matthieu Bouaziz,4 Lucile Revilliod,1 Mickaël Guedj,4 Jörg H W Distler,5 Marco Matucci-Cerinic,6 Marc Humbert,7–9 Gabriella Riemekasten,10,11 Paolo Airo,12 Inga Melchers,13 Eric Hachulla,14 Daniele Cusi,15,16 H- Erich Wichmann,17,18,19 Nicolas Hunzelmann,20 Kiet Tiev,21 Paola Caramaschi,22 Elisabeth Diot,23 Otylia Kowal-Bielecka,24 Giovanna Cuomo,25 Ulrich Walker,26 László Czirják,27 Nemanja Damjanov,28 Sara Lupoli,16 Costanza Conti,29 Martina Müller-Nurasyid,30,31,32 Ulf Müller-Ladner,33 Valeria Riccieri,34 Jean-Luc Cracowski,35 Franco Cozzi,36 Vasiliki Kalliopi Bournia,37 P Vlachoyiannopoulos,37 Gilles Chiocchia,1 Catherine Boileau,38 Yannick Allanore1,2

ABSTRACT

Introduction Systemic sclerosis (SSc)-related pulmonary arterial hypertension (PAH) has emerged as a major mortality prognostic factor. Mutations of transforming growth factor beta (TGFβ) receptor genes strongly contribute to idiopathic and familial PAH.

Objective To explore the genetic bases of SSc–PAH, we combined direct sequencing and genotyping of candidate genes encoding TGFβ receptor family members.

Materials and methods TGFβ receptor genes, BMPR2, ALK1, TGFR2 and ENG, were sequenced in 10 SSc–PAH patients, nine SSc and seven controls. In addition, 22 single-nucleotide polymorphisms (SNP) of these four candidate genes were tested for association in a first set of 824 French Caucasian SSc patients (including 54 SSc–PAH) and 939 controls. The replication set consisted of 1516 European SSc (including 219 SSc–PAH) and 3129 controls from the European League Against Rheumatism Scleroderma Trials and Research group network.

Results No mutation was identified by direct sequencing. However, two repertoried SNP, ENG rs35400405 and ALK1 rs2277382, were found in SSc–PAH patients only. The genotyping of 22 SNP including the latter showed that only rs2277382 was associated with SSc–PAH (p=0.0066, OR 2.13, 95% CI 1.24 to 3.65). Nevertheless, this was not replicated with the following result in combined analysis: p=0.123, OR 0.79, 95% CI 0.59 to 1.07.

Conclusions This study demonstrates the lack of association between these TGFβ receptor gene polymorphisms and SSc–PAH using both sequencing and genotyping methods.

INTRODUCTION

Systemic sclerosis (SSc) is characterised by major vascular involvement. Pulmonary arterial hypertension (PAH) is currently an important challenge in SSc and given the severity of this condition and the poor understanding of its risk factors and pathogenesis, there is an urgent need to identify novel risk factors for the development of SSc–PAH.1 The identification of mutations in the BMPR2 gene, and also in other transforming growth factor beta (TGFβ) receptor genes in idiopathic PAH and familial PAH has been an important step forward. Indeed, mutations in the BMPR2 gene, which encodes a type II bone morphogenetic protein receptor of the TGFβ cell signalling superfamily, underlie the majority of hereditary PAH cases but have also been identified in other disease subtypes including idiopathic PAH and PAH associated with other disorders.3–4 Mutations in two further receptor members of the TGFβ signalling superfamily have been identified as uncommon causes of hereditary PAH. Indeed, hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disease, caused by heterozygous mutations of either TGFβ type I receptor activin-like kinase-type 1 (ALK1) or of the endoglin gene (ENG).5 A small proportion of HHT patients have PAH that is clinically and histopathologically indistinguishable from other heritable forms of PAH. In rare cases, mutations of ALK-1 appeared to cause idiopathic PAH and hereditary PAH without HHT.4 Therefore, BMPR2, ALK1 and ENG genes, belonging to the TGFβ superfamily, represent good candidates for the study of genetic susceptibility to SSc–PAH.

Few studies have attempted to identify SSc–PAH genetic risk factors. Despite some relevant prelimin-
ary results, a lack of appropriate cohorts (because of imperfect phenotype and/or insufficient statistical power) has precluded definitive conclusions.6–9

The aim of this study was to investigate a specific genetic basis favouring the occurrence of PAH in SSc, using a synergistic strategy combining direct sequencing together with genotyping of common variants of candidate genes encoding four TGFβ receptors: BMPR2, ALK1, ENG and TGFBR2.

PATIENTS AND METHODS

Study population

All SSc patients and controls were of European Caucasian origin and were provided through the European League Against Rheumatism Scleroderma Trials and Research group (EUSTAR) centres. The discovery set consisted of 824 SSc patients, including 54 SSc–PAH patients and 959 controls from French centres. The replication set consisted of cohorts from other French centres. The discovery set consisted of 824 SSc patients, including 54 SSc–PAH patients and 959 controls from French centres. The replication set consisted of cohorts from other French centres.

Direct sequencing

As a first approach, 26 French Caucasian individuals (10 SSc patients, nine SSc patients without PAH and seven healthy controls) were sequenced for the candidate genes encoding four TGFβ receptors: BMPR2, ALK1, ENG and TGFBR2. Genomic DNA was extracted from blood samples (Qiagen, Courtaboeuf, France). PCR primers were designed using Primer 3 to amplify DNA from blood samples (Qiagen, Courtaboeuf, France). PCR primers were designed using Primer 3 to amplify DNA from blood samples (Qiagen, Courtaboeuf, France). PCR primers were designed using Primer 3 to amplify DNA from blood samples (Qiagen, Courtaboeuf, France).

Genotyping

As a second approach, any single-nucleotide variation detected by direct sequencing in SSc–PAH patients and not present either in controls or PAH-free SSc patients, was tested for association in the genotyping cohort. In addition, Tag single-nucleotide polymorphisms (SNP) with a minor allele frequency (MAF) greater than 5% were genotyped for each of the four TGFβ receptor genes using the KASpar genotyping system (KBioscience, Hoddesdon, UK) as previously described.13 Six SNP of the BMPR2 gene (rs7600694, rs1061517, rs1048289, rs6747756, rs1980153, rs16839127), seven SNP of the TGFBR2 gene (rs377626, rs1841528, rs2572092, rs773661, rs9867701, rs114665651, rs114665556), four SNP of the ALK1 gene (rs706815, rs772003, rs2277382, rs3782479) and five SNP of the ENG gene (rs5400405, rs1998923, rs1550854, rs10987746, rs1757600) were chosen according to linkage disequilibrium structure. The average genotype completeness for these variants was above 97% for both the SSc and the control samples.

Statistical analyses

Statistical analyses were performed as previously described.13 The Bonferroni correction was applied for all tests performed for SNP marker association with the disease (p value multiplied by n SNP). The analysis of combined data was performed by calculation of the pooled OR under a fixed-effects model (Mantel–Haenszel meta-analysis). No power calculation can be provided for mutation investigations, but regarding common SNP (MAF >5%) and for ALK1 rs2277382 in particular, the combined sample provides a power of 99.9% to detect an association with SSc and of 52.3% for the SSc–PAH subset, with an OR of 1.5.

RESULTS

Sequencing of TGFβR genes in cases and controls

No mutation was identified through the sequencing of 38 SSc and 14 control chromosomes (table 1). We identified 17 polymorphisms: 15 SNP listed in public databases and four variants not yet repertoried, none of which were mutations as they were found both in patients and controls. Two variants emerged as interesting candidates for further study. Indeed, the SNP located at codon 14 of exon 1 in the ENG gene, known as...

Table 1 Variants identified by direct sequencing of the ENG, ALK1, TGFBR2 and BMPR2 genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Location</th>
<th>Nucleotide change</th>
<th>Amino acid change</th>
<th>rs number</th>
<th>MAF</th>
<th>SSc–PAH (n=10)</th>
<th>SSc without PAH (n=9)</th>
<th>Controls (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG</td>
<td>Exon 1</td>
<td>c.14 G>A</td>
<td>p.T5M</td>
<td>rs35400405</td>
<td>NA</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inter 1 (−215)</td>
<td>T>C</td>
<td></td>
<td>rs60683420</td>
<td>NA</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Exon 2</td>
<td>c.227 C>T</td>
<td>p.L69L</td>
<td>rs16930129</td>
<td>0.165</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Intron 2 (+25)</td>
<td>A>C</td>
<td></td>
<td>rs7847860</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Intron 5* (+59)</td>
<td>del G</td>
<td></td>
<td></td>
<td>NA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Intron 7* (+23)</td>
<td>ins TCCCC</td>
<td></td>
<td></td>
<td>NA</td>
<td>1</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Exon 8</td>
<td>c.1029 G>A</td>
<td>p.H343H</td>
<td>rs3739817</td>
<td>0.068</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Intron 13 (−72)</td>
<td>A>G</td>
<td></td>
<td>rs1076503</td>
<td>0.407</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>ALK1</td>
<td>Promoter (−38)</td>
<td>C>T</td>
<td></td>
<td>rs2277382</td>
<td>0.075</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Intron 3 (−11)</td>
<td>T>C</td>
<td></td>
<td>rs2071218</td>
<td>0.165</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Intron 3 (−36)*</td>
<td>A>T</td>
<td></td>
<td>rs2071218</td>
<td>0.165</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Intron 5 (+44)*</td>
<td>A>G</td>
<td></td>
<td>rs1155705</td>
<td>0.336</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Intron 3 (−4)</td>
<td>A>T</td>
<td></td>
<td>rs11466512</td>
<td>NA</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Exon 4</td>
<td>c.1167 C>T</td>
<td></td>
<td>rs2220849</td>
<td>0.027</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BMPR2</td>
<td>Inter 6 (−22)</td>
<td>del T</td>
<td>p.R937R</td>
<td>rs11464745</td>
<td>NA</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Exon 12</td>
<td>c.2811 G>A</td>
<td>p.T5M</td>
<td>rs1061157</td>
<td>0.128</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

*Novel variants.

ALK1, activin A receptor type II-like 1; BMPR2, BMP receptor type II; ENG, endoglin; MAF, minor allele frequency; NA, not available; PAH, pulmonary arterial hypertension; SSc, systemic sclerosis; TGFBR2, TGFbeta receptor type II.
Association testing of identified variants and common tag SNP of the TGFβ genes

Discovery set
We investigated the possible association of polymorphisms in the *ALK1*, *TGFBR2*, *BMPR2* and *EGN* genes with SSc and the SSc–PAH subtype by genotyping rs35400405, rs2277382 and 20 tag SNP distributed throughout these genes (table 2). No association was found with SSc in the discovery set. Genetic association was solely observed between the SSc–PAH subset and the *ALK1* rs2277382 SNP (OR 2.13, 95% CI 1.24 to 3.65, *p* _adj_ = 0.0066).

Replication set
Following the results obtained in the discovery set, we selected the *ALK1* rs2277382 SNP to be investigated in the EUSTAR replication cohort (table 3). Genotype frequencies of the rs2277382 variant were in Hardy–Weinberg equilibrium in all control populations. However, we did not observe any association between the rs2277382T allele and either SSc–PAH or the SSc subset in these replication sets.

Meta-analysis in the European Caucasian population
Meta-analysis of the combined discovery and replication populations (French, northern European, Italian and eastern European) including a total of 2340 SSc patients, 273 SSc–PAH and 4068 controls did not provide evidence for an association between *ALK1* rs2277382 and neither SSc–PAH nor SSc.

DISCUSSION
Genes encoding TGFβ receptors have been identified as major susceptibility genes in familial and idiopathic forms of PAH. Understanding the genetic differences between idiopathic PAH and SSc–PAH, and also between patients with SSc who do and do not develop PAH, may improve our ability to develop genetic biomarkers of SSc–PAH. This may help to identify these patients earlier in the disease course and to risk stratify patients in order to optimise the management of this devastating condition.

So far, preliminary studies investigating *BMPR2* and *ALK1* have failed to identify variants associated with SSc–PAH by a direct sequencing strategy. However, they were limited by small sample size and heterogeneous definition of PAH.7–9

Furthermore, an insertion in intron 7 of the *ENG* gene (6bINS) was reported to be negatively associated with the occurrence of SSc–PAH in a previous work from our group in a small cohort of 280 SSc patients including 29 with PAH and 140 controls.15 However, until now this result has not been replicated in a larger cohort.

In this study, the *ALK1* rs2277382 and *ENG* rs35400405 SNP were of particular interest because they were detected only in SSc–PAH patients by direct sequencing, the hypothesis being that their minor alleles could be associated with the development of PAH in our cohorts. However, no association was found between these polymorphisms and both the complication of PAH in our cohorts. Furthermore, an insertion in intron 7 of the *ENG* gene (6bINS) was reported to be negatively associated with the occurrence of SSc–PAH in a previous work from our group in a small cohort of 280 SSc patients including 29 with PAH and 140 controls.15 However, until now this result has not been replicated in a larger cohort.

In this study, the *ALK1* rs2277382 and *ENG* rs35400405 SNP were of particular interest because they were detected only in SSc–PAH patients by direct sequencing, the hypothesis being that their minor alleles could be associated with the development of PAH in our cohorts. However, no association was found between these polymorphisms and both the complication that is SSc–PAH and also SSc. This does not rule out the possible implication of other TGFβ signalling pathway genes. Indeed, mutations in the *SMAD* genes have recently been identified in PAH patients and could represent another potential candidate to take into account in the genetics of SSc–PAH in further studies.16 Furthermore, another limitation may come from the fact that some SSc patients may develop PAH later during the course of the disease.

Table 2: Association study of *ALK1* rs2277382 and *ENG* rs35400405 SNP in the French discovery cohort

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MAF (%)</th>
<th>Fischer’s p value</th>
<th>p-adj*</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALK1 rs2277382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSc</td>
<td>824</td>
<td>9.04</td>
<td>0.003</td>
<td>0.066</td>
<td>1.43 (1.13 to 1.81)</td>
</tr>
<tr>
<td>PAH–SSc</td>
<td>54</td>
<td>12.9</td>
<td>0.0003</td>
<td>0.0066</td>
<td>2.13 (1.24 to 3.65)</td>
</tr>
<tr>
<td>Controls</td>
<td>939</td>
<td>6.50</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ENG rs35400405</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSc</td>
<td>822</td>
<td>2.49</td>
<td>0.26</td>
<td>NS</td>
<td>1.30 (0.82 to 2.05)</td>
</tr>
<tr>
<td>PAH–SSc</td>
<td>54</td>
<td>3.64</td>
<td>0.22</td>
<td>NS</td>
<td>1.92 (0.67 to 5.49)</td>
</tr>
<tr>
<td>Controls</td>
<td>906</td>
<td>1.93</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

ENG, endoglin gene; MAF, minor allele frequency; NA, not applicable; *p*-adj*, adjusted *p* value after Bonferroni correction for multiple SNP testing (n=22); PAH, pulmonary arterial hypertension; SNP, single-nucleotide polymorphism; SSc, systemic sclerosis.

Table 3: Association study of ALK1 rs2277382 with SSc and PAH–SSc in the second set of European Caucasian populations and combined analysis including the discovery and replication cohorts

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MAF (%)</th>
<th>p value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>French replication cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSc</td>
<td>175</td>
<td>8.57</td>
<td>0.410</td>
<td>1.21 (0.77 to 1.90)</td>
</tr>
<tr>
<td>PAH–SSc</td>
<td>75</td>
<td>8.67</td>
<td>0.524</td>
<td>1.23 (0.66 to 2.29)</td>
</tr>
<tr>
<td>Controls</td>
<td>438</td>
<td>7.19</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Italian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSc</td>
<td>542</td>
<td>8.76</td>
<td>0.870</td>
<td>1.03 (0.75 to 1.40)</td>
</tr>
<tr>
<td>PAH–SSc</td>
<td>33</td>
<td>9.09</td>
<td>0.881</td>
<td>1.07 (0.45 to 2.55)</td>
</tr>
<tr>
<td>Controls</td>
<td>479</td>
<td>8.56</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Northern European</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSc</td>
<td>455</td>
<td>8.46</td>
<td>0.990</td>
<td>0.10 (0.77 to 1.30)</td>
</tr>
<tr>
<td>PAH–SSc</td>
<td>59</td>
<td>11.02</td>
<td>0.331</td>
<td>1.34 (0.74 to 2.41)</td>
</tr>
<tr>
<td>Controls</td>
<td>1823</td>
<td>8.48</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Eastern European</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSc</td>
<td>344</td>
<td>5.96</td>
<td>0.570</td>
<td>0.89 (0.58 to 1.35)</td>
</tr>
<tr>
<td>PAH–SSc</td>
<td>52</td>
<td>2.88</td>
<td>0.132</td>
<td>0.42 (0.13 to 1.35)</td>
</tr>
<tr>
<td>Controls</td>
<td>389</td>
<td>6.68</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Meta-analysis in the combined discovery and replication populations in an additive model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSc</td>
<td>2340</td>
<td>8.44</td>
<td>0.149</td>
<td>0.91 (0.80 to 1.04)</td>
</tr>
<tr>
<td>PAH–SSc</td>
<td>273</td>
<td>9.52</td>
<td>0.123</td>
<td>0.78 (0.59 to 1.07)</td>
</tr>
<tr>
<td>Controls</td>
<td>4068</td>
<td>7.72</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

MAF, minor allele frequency; NA, not applicable; PAH, pulmonary arterial hypertension; SSc, systemic sclerosis.
In conclusion, this study was conducted using a synergistic strategy combining direct sequencing for the identification of potential mutations or rare variants, and genotyping of common variants in a large sample including a replication step. These analyses demonstrate the lack of association between these TGFβ receptor gene polymorphisms and SSC–PAH.

Author affiliations
1 Paris Descartes University, INSERM U1018, Institut Cochin, Sorbonne Paris Cité, Paris, France
2 Rheumatology A Department, Paris Descartes University, Cochin Hospital, APHP, Paris, France
3 Department of Rheumatology, Université Paris 7, INSERM U699, Hôpital Bichat, Paris, France
4 UMVR CNRS-8071/NRA-1152, Université d’Evry Val d’Essonne, Evry, France
5 Department for Internal Medicine 3, Institute for Clinical Immunology Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
6 Department of Biomedicine & Division of Rheumatology ADUC, Department of Rheumatology AUC, Department of Medicine & Dano Centre, University of Florence, Florence, Italy
7 Université Paris-Sud, Le Kremlin-Bicêtre, France
8 IFM Hôpital Antoine Béclère, Clamart, France
9 INSERM U999, Centre Chirurgical Marie-Lannelongue, Le Plessis-Robinson, France
10 Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany
11 German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany
12 Department of Rheumatology and Clinical Immunology, Spedali Civili, Brescia, Italy
13 Department of Clinical Research Unit for Rheumatology, University Medical Center, Freiburg, Germany
14 Department of Médecine Interne, Université Lille II, Lille, France
15 University of Milano, Department of Medicine, Surgery, and Dentistry, San Paolo School of Medicine, Milan, Italy
16 Genomics and Bioinformatics Platform, Fondazione Filarete, Milan, Italy
17 Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
18 Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
19 Klinikum Grosshadern, Munich, Germany
20 Department of Dermatology, University of Cologne, Cologne, Germany
21 Université Pierre et Marie Curie, Service de Médecine Interne, Hôpital Saint Antoine, Paris, France
22 Department of Clinical and Experimental Medicine, Rheumatology Unit, University of Verona, Verona, Italy
23 INSERM U618, IFR 135, CHU Bretonneau, Tours, France
24 Department of Rheumatology and Internal Medicine, Medical University of Białystok, Białystok, Poland
25 Department of Clinical and Experimental Medicine, Rheumatology Unit, Second University of Naples, Naples, Italy
26 Department of Rheumatology, Basel University, Basel, Switzerland
27 Department of Immunology and Rheumatology, University of Pécs, Pécs, Hungary
28 Rheumatology AUC, Department of Medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
29 Kos Genetic SRL, Milan, Italy
30 Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
31 Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology and Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
32 Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
33 Department of Rheumatology and Clinical Immunology, University of Giessen, Kerpach-Klinik, Bad Nauheim, Germany
34 Department of Medical Clinic and Therapy, Division of Rheumatology, University "Sapienza" of Rome, Rome, Italy
35 INSERM UCC3, CHU Grenoble, Grenoble, France
36 Cartedra de Reumatologia, Dip. Medicina Clinica e Sperimentale, Policlinico – Universita' di Padova, Padua, Italy
37 Department of Pathophysiology, Medical School, University of Athens, Athens, Greece
38 Department of Biochemistry, Genetic and Hormonology, Ambroise Paré Hospital, Boulogne and INSERM U699, Bichat Hospital, Paris, France

Acknowledgements The authors thank the European League Against Rheumatism Scleroderma Trials and Research group (EUSTAR) for facilitating the DNA collection and supporting the project, the KORA SA study and HYPERGENE consortium for providing data, respectively, from German and Italian controls, the French members of the GENESYS Consortium (Patrick Carpenter [Grenoble], Jean Sibilia [Strasbourg], Jean Cabane [Paris], Luc Moutouhn [Paris], Camille Frances [Paris], Zahir Amoura [Paris], Anne Cosnes [Créteil]). The authors also thank Dr J Bersianos and Prof B Grandchamp (Centre de Ressources Biologiques, Hôpital Bichat, Etablissement Français du Sang [Paris], for their assistance in setting up the French Caucasian control sample.

Contributors All authors contributed substantially to the conception and design, to the drafting of the article and the final approval of the submitted manuscript.

Funding This study was supported by the Association des Sclérodermiques de France, INSERM, Agence Nationale pour la Recherche (grant R07094KS). YA is the recipient of an investigator-initiated research grant from Pfizer.

Competing interests None.

Patient consent Obtained.

Ethics approval All local institutional review boards approved the study.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
TGFβ receptor gene variants in systemic sclerosis-related pulmonary arterial hypertension: results from a multicentre EUSTAR study of European Caucasian patients

Ann Rheum Dis 2012 71: 1900-1903 originally published online August 15, 2012
doi: 10.1136/annrheumdis-2012-201755

Updated information and services can be found at:
http://ard.bmj.com/content/71/11/1900

These include:

References
This article cites 15 articles, 5 of which you can access for free at:
http://ard.bmj.com/content/71/11/1900#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Genetics (899)
- Connective tissue disease (3912)
- Epidemiology (1269)
- Musculoskeletal syndromes (4552)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/