OBJECTIVE: To compare mortality data obtained from randomized controlled trials for the 5 tumor necrosis factor-α (TNF-α) inhibitors used in the treatment of rheumatoid arthritis.

METHODS: A systematic review of articles published up to November 2014 was performed using electronic databases. We included randomized, controlled trials, with a follow-up period of at least 24 weeks, comparing TNF-α inhibitors to placebo or disease-modifying antirheumatic drugs. The primary outcome was the occurrence of all-cause mortality.

RESULTS: Twenty-three studies were selected. These articles included 6525 patients in the anti-TNF-α group and 3523 in the control group. The duration of patient follow-up ranged from 24 to 104 weeks. The risk of all-cause mortality in patients receiving TNF-α inhibitors was not significantly different from those receiving the comparator (odds ratio 1.32; 95% confidence interval, 0.76-2.29). Subgroup analyses with respect to the molecule used, the dose received, the use of TNF-α inhibitors as monotherapy or combination therapy, or the quality of the trial did not modify the findings.

CONCLUSION: This meta-analysis performed on a large number of patients and including the 5 TNF-α inhibitors currently available shows no increased risk of medium-term all-cause mortality in patients with rheumatoid arthritis.

© 2015 Elsevier Inc. All rights reserved. • The American Journal of Medicine (2015)
research was limited to English language and human clinical trials.

Inclusion Criteria
We defined the target population as adults with rheumatoid arthritis diagnosed according to the 1987 American College of Rheumatology criteria.\(^5\) Interventions included all 5 currently available TNF-\(\alpha\) inhibitors. Eligible comparators included placebo and conventional disease-modifying antirheumatic drugs (DMARDs). The primary outcome of this study was the occurrence of all-cause mortality defined on an intention-to-treat basis. To better reflect the drug effect on the potential risk of death, included studies have to report a minimum of 24 weeks of the study duration.

Methodological Quality
The articles that fulfilled the inclusion criteria underwent quality appraisal by using the Jadad scale.\(^6\)

Data Extraction
Two investigators (LP and JA) independently extracted data from articles using a customized form, available from the authors. Disagreements were resolved by consensus.

Statistical Analysis
We used the Mantel-Haenszel method for calculating the weighted summary odds ratio under the fixed-effect model. Next, the heterogeneity was incorporated to calculate summary odds ratios under the random-effects model (DerSimonian and Laird).\(^7\) Statistical heterogeneity was tested by Q-test (\(\chi^2\)) and \(I^2\) statistic calculation.\(^8\) All statistical tests and creation of forest plots were conducted with MedCalc software (v11.4.4; Ostend, Belgium). Additional subgroup analyses were planned to check whether they would substantially change the findings.

RESULTS

Included Studies
The results of the article selection process are reported in Figure 1. Among the 495 studies initially analyzed, 23 studies fulfilled our inclusion criteria (Table 1).\(^9\)\(^{-}\)\(^3\)\(^1\) The median study duration was 46 weeks (range: 24 to 104 weeks). This analysis included 10,048 patients: 6525 were treated with TNF-\(\alpha\) inhibitors show no increased risk of medium-term all-cause mortality.
• The type of molecule and the dose received do not modify this finding.

<table>
<thead>
<tr>
<th>CLINICAL SIGNIFICANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor necrosis factor-(\alpha) inhibitors show no increased risk of medium-term all-cause mortality.</td>
</tr>
<tr>
<td>The type of molecule and the dose received do not modify this finding.</td>
</tr>
</tbody>
</table>

\(\text{Figure 1} \quad \text{Flow diagram of articles evaluated for inclusion and exclusion. RA = rheumatoid arthritis.}\)
<table>
<thead>
<tr>
<th>Reference</th>
<th>Mean Disease Duration (Y)</th>
<th>n</th>
<th>Type</th>
<th>Placebo</th>
<th>TNF-α Inhibitor</th>
<th>Trial Duration (Wk)</th>
<th>Jadad Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kremer et al, 2010</td>
<td>8.3</td>
<td>129</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Golimumab 2-4 mg/kg/3 mo</td>
<td>257</td>
<td>48</td>
</tr>
<tr>
<td>Emery et al, 2009</td>
<td>3.4</td>
<td>160</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Golimumab 50 or 100 mg/4 wk</td>
<td>318</td>
<td>24</td>
</tr>
<tr>
<td>Quinn et al, 2005</td>
<td>0.6</td>
<td>10</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Infliximab 3 mg/kg</td>
<td>10</td>
<td>54</td>
</tr>
<tr>
<td>St. Clair et al, 2004</td>
<td>0.9</td>
<td>291</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Infliximab 3 or 6 mg/kg</td>
<td>749</td>
<td>54</td>
</tr>
<tr>
<td>Keystone et al, 2004</td>
<td>11.0</td>
<td>200</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Adalimumab 20 mg/wk or 40 mg/2 wk</td>
<td>419</td>
<td>52</td>
</tr>
<tr>
<td>Furst et al, 2003</td>
<td>10.4</td>
<td>318</td>
<td>Disease-modifying</td>
<td>Placebo</td>
<td>Adalimumab 40 mg/2 wk</td>
<td>318</td>
<td>24</td>
</tr>
<tr>
<td>Smolen et al, 2013</td>
<td>6.8</td>
<td>200</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Etanercept 25 or 50 mg/wk</td>
<td>404</td>
<td>28</td>
</tr>
<tr>
<td>Klareskog et al, 2004</td>
<td>6.8</td>
<td>228</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Etanercept 25 mg/2 wk</td>
<td>231</td>
<td>52</td>
</tr>
<tr>
<td>Combe et al, 2006</td>
<td>6.2</td>
<td>50</td>
<td>Sulfasalazine</td>
<td>Placebo</td>
<td>Etanercept 25 mg/2 wk</td>
<td>101</td>
<td>24</td>
</tr>
<tr>
<td>Smolen et al, 2009</td>
<td>6.2</td>
<td>127</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Certolizumab 200 mg or 400 mg/2 wk</td>
<td>492</td>
<td>24</td>
</tr>
<tr>
<td>Fleischmann et al, 2009</td>
<td>9.6</td>
<td>109</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Certolizumab 400 mg/2 wk</td>
<td>111</td>
<td>24</td>
</tr>
<tr>
<td>Keystone et al, 2008</td>
<td>6.2</td>
<td>199</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Certolizumab 200 or 400 mg/2 wk</td>
<td>783</td>
<td>52</td>
</tr>
<tr>
<td>Durez et al, 2007</td>
<td>0.4</td>
<td>14</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Infliximab 3 mg/kg</td>
<td>15</td>
<td>46</td>
</tr>
<tr>
<td>Lipsky et al, 2000</td>
<td>10.6</td>
<td>88</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Infliximab 3-10 mg/kg</td>
<td>340</td>
<td>52</td>
</tr>
<tr>
<td>Kavarnaugh et al, 2013</td>
<td>0.3</td>
<td>517</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Adalimumab 40 mg/2 wk</td>
<td>515</td>
<td>78</td>
</tr>
<tr>
<td>Van Vollenhoven et al, 2011</td>
<td>8.6</td>
<td>76</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Adalimumab 40 mg/2 wk</td>
<td>79</td>
<td>26</td>
</tr>
<tr>
<td>Choy et al, 2012</td>
<td>9.6</td>
<td>121</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Certolizumab 400 mg/2 wk</td>
<td>126</td>
<td>24</td>
</tr>
<tr>
<td>Breedveld et al, 2008</td>
<td>0.8</td>
<td>257</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Adalimumab 40 mg/2 wk</td>
<td>268</td>
<td>52</td>
</tr>
<tr>
<td>Miyasaka et al, 2008</td>
<td>9.4</td>
<td>87</td>
<td>Placebo</td>
<td>Placebo</td>
<td>Adalimumab 20-40 mg or 80 mg/2 wk</td>
<td>265</td>
<td>24</td>
</tr>
<tr>
<td>van de Putte et al, 2004</td>
<td>10.9</td>
<td>110</td>
<td>Placebo</td>
<td>Placebo</td>
<td>Adalimumab 20-40 mg/wk or 2 wk</td>
<td>434</td>
<td>26</td>
</tr>
<tr>
<td>Schiff et al, 2008</td>
<td>7.7</td>
<td>110</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Infliximab 3 mg/kg</td>
<td>165</td>
<td>24</td>
</tr>
<tr>
<td>Leirisalo-Repo et al, 2013</td>
<td>0.3</td>
<td>49</td>
<td>Disease-modifying</td>
<td>Placebo</td>
<td>Infliximab 3 mg/kg</td>
<td>50</td>
<td>104</td>
</tr>
<tr>
<td>Bejarano et al, 2008</td>
<td>0.7</td>
<td>73</td>
<td>Methotrexate</td>
<td>Placebo</td>
<td>Adalimumab Not reported</td>
<td>75</td>
<td>56</td>
</tr>
</tbody>
</table>

TNF = tumor necrosis factor.
<table>
<thead>
<tr>
<th>Reference</th>
<th>TNF-α Inhibitor</th>
<th>Dose of TNF-α Inhibitor</th>
<th>Placebo Dose of TNF-α Inhibitor</th>
<th>Deaths, n</th>
<th>Cause of Death</th>
<th>TNF-α Inhibitor</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kremer et al, 2010</td>
<td>Golimumab</td>
<td>2-4 mg/kg/3 mos</td>
<td>Placebo 2-4 mg/kg/3 mos</td>
<td>0</td>
<td>Myocardial infarction</td>
<td>Normal/high</td>
<td></td>
</tr>
<tr>
<td>Emery et al, 2009</td>
<td>Golimumab</td>
<td>50 or 100 mg/4 wk</td>
<td>Placebo 50 or 100 mg/4 wk</td>
<td>0</td>
<td>Suicide, cardiorespiratory arrest after surgery</td>
<td>Normal/high</td>
<td></td>
</tr>
<tr>
<td>Quinn et al, 2005</td>
<td>Infliximab</td>
<td>3 mg/kg</td>
<td>Placebo 3 mg/kg</td>
<td>0</td>
<td>Respiratory failure due to methotrexate, upper gastrointestinal bleed</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>St Clair et al, 2004</td>
<td>Infliximab</td>
<td>3 or 6 mg/kg</td>
<td>Placebo 3 or 6 mg/kg</td>
<td>2</td>
<td>Cardiac arrest, metastatic pancreatic cancer</td>
<td>Normal/high</td>
<td></td>
</tr>
<tr>
<td>Keystone et al, 2004</td>
<td>Adalimumab</td>
<td>20 mg/wk or 40 mg/2 wk</td>
<td>Placebo 20 mg/wk</td>
<td>0</td>
<td>Multiple fractures, urosepsis, complications of chemotherapy for lymphoma</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Furst et al, 2003</td>
<td>Adalimumab</td>
<td>40 mg/2 wk</td>
<td>Placebo 40 mg/2 wk</td>
<td>0</td>
<td>Necrotizing fascitis</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Smolen et al, 2013</td>
<td>Etanercept</td>
<td>25 or 50 mg/wk</td>
<td>Placebo 25 or 50 mg/wk</td>
<td>0</td>
<td>Pulmonary embolism, septicemia</td>
<td>Low/normal</td>
<td></td>
</tr>
<tr>
<td>Klareckog et al, 2004</td>
<td>Etanercept</td>
<td>25 mg 2/wk</td>
<td>Placebo 25 mg 2/wk</td>
<td>1</td>
<td>Pulmonary embolism</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Combe et al, 2006</td>
<td>Etanercept</td>
<td>25 mg 2/wk</td>
<td>Placebo 25 mg 2/wk</td>
<td>0</td>
<td>Stroke and pneumonia</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Smolen et al, 2009</td>
<td>Certolizumab</td>
<td>200 mg or 400 mg/2 wk</td>
<td>Placebo 200 mg or 400 mg/2 wk</td>
<td>0</td>
<td>Myocardial infarction, fracture and shock</td>
<td>Low/normal</td>
<td></td>
</tr>
<tr>
<td>Fleischmann et al, 2009</td>
<td>Certolizumab</td>
<td>400 mg/2 wk</td>
<td>Placebo 400 mg/2 wk</td>
<td>0</td>
<td>Myocardial infarction</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Keistone et al, 2008</td>
<td>Certolizumab</td>
<td>200 or 400 mg/2 wk</td>
<td>Placebo 200 or 400 mg/2 wk</td>
<td>1</td>
<td>Myocardial infarction</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Durez et al, 2007</td>
<td>Infliximab</td>
<td>3 mg/kg</td>
<td>Placebo 3 mg/kg</td>
<td>0</td>
<td>Septic shock, right ventricular failure, unknown cause, acute respiratory distress, two interstitial lung disease</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Lipsky et al, 2000</td>
<td>Infliximab</td>
<td>3-10 mg/kg</td>
<td>Placebo 3-10 mg/kg</td>
<td>3</td>
<td>Sudden death</td>
<td>Normal/low/high</td>
<td></td>
</tr>
<tr>
<td>Kavanaugh et al, 2013</td>
<td>Adalimumab</td>
<td>40 mg/2 wk</td>
<td>Placebo 40 mg/2 wk</td>
<td>1</td>
<td>Sudden death</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Van Vollenhoven et al, 2011</td>
<td>Adalimumab</td>
<td>40 mg/2 wk</td>
<td>Placebo 40 mg/2 wk</td>
<td>0</td>
<td>Complications of bowel obstruction</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Choy et al, 2012</td>
<td>Certolizumab</td>
<td>400 mg/2 wk</td>
<td>Placebo 400 mg/2 wk</td>
<td>0</td>
<td>Pneumonia</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Breedveld et al, 2006</td>
<td>Adalimumab</td>
<td>40 mg/2 wk</td>
<td>Placebo 40 mg/2 wk</td>
<td>1</td>
<td>Ovarian cancer</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Miyasaka et al, 2008</td>
<td>Adalimumab</td>
<td>20-40 mg or 80 mg/2 wk</td>
<td>Placebo 20-40 mg or 80 mg/2 wk</td>
<td>0</td>
<td>Interstitial lung disease, cerebral hemorrhage</td>
<td>Low/normal/high</td>
<td></td>
</tr>
<tr>
<td>van de Putte et al, 2004</td>
<td>Adalimumab</td>
<td>20-40 mg/wk or 2 wk</td>
<td>Placebo 20-40 mg/wk or 2 wk</td>
<td>1</td>
<td>Metastatic adenocarcinoma, cholangiocarcinoma, myocardial infarction</td>
<td>Low/normal/high</td>
<td></td>
</tr>
<tr>
<td>Schiff et al, 2008</td>
<td>Infliximab</td>
<td>3 mg/kg</td>
<td>Placebo 3 mg/kg</td>
<td>0</td>
<td>Fibrosarcoma</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Leirisalo-Repo et al, 2013</td>
<td>Infliximab</td>
<td>3 mg/kg</td>
<td>Placebo 3 mg/kg</td>
<td>0</td>
<td>Not reported</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Bejarano et al, 2008</td>
<td>Adalimumab</td>
<td>Not reported</td>
<td>Placebo Not reported</td>
<td>0</td>
<td>Not reported</td>
<td>Not reported</td>
<td></td>
</tr>
</tbody>
</table>

TNF = tumor necrosis factor.
inhibitors and 3523 were treated with placebo or conventional DMARDs.

Primary Outcome: Mortality of Any Cause Upon TNF-α Inhibitors Compared with Controls

During the study duration, 34/6525 (0.52%) deaths were observed in patients treated with TNF-α inhibitors, compared with 10/3523 (0.28%) deaths in those treated with conventional DMARDs/placebo (P = .113) ([Table 2](#)). Thus, the risk of death of any cause in patients receiving TNF-α inhibitors was not significantly different from those receiving the comparator (odds ratio [OR] 1.32; 95% confidence interval [CI], 0.76-2.29) ([Figure 2](#)). The results were consistent across trials (Q = 7.87, P = .99, I² < 25%).

Subgroup analysis within the type of comparator did not modify previously observed results. The OR of mortality of patients receiving TNF-α inhibitors used as monotherapy vs placebo was 1.04 (95% CI, 0.20-5.34), and the OR of mortality of patients receiving TNF-α inhibitors used in combination therapy vs conventional DMARDs was 1.36 (95% CI, 0.76-2.43).

Secondary Analyses

Subgroup Analyses with Respect to Each Molecule. Individually, each molecule analyzed separately did not show an increased risk of mortality of any cause ([Table 3](#)).

Subgroup Analysis with Respect to the Dose of TNF-α Inhibitors. To address the potential dose impact, we compared the mortality event rates according to TNF-α inhibitor dose (high dose, defined by a dose higher than usual TNF-α inhibitor dose as per package insert, vs usual dose). High dose of TNF-α inhibitors was not significantly associated with a significant increase in risk of mortality (OR 0.97; 95% CI, 0.26-3.54 vs 1.43; 95% CI, 0.79-2.59 for the usual dose).

Table 3 Odds Ratio for All-cause Mortality According to the Molecule Used

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Adalimumab</th>
<th>Golimumab</th>
<th>Certolizumab</th>
<th>Infliximab</th>
<th>Etanercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid arthritis (OR, 95% CI)</td>
<td>1.32 (95% CI, 0.76-2.29)</td>
<td>2.17 (95% CI, 0.83-5.68)</td>
<td>2.02 (95% CI, 0.23-18.19)</td>
<td>1.19 (95% CI, 0.27-5.18)</td>
<td>0.70 (95% CI, 0.27-1.81)</td>
<td>1.28 (95% CI, 0.23-7.25)</td>
</tr>
</tbody>
</table>

CI = confidence interval; OR = odds ratio.
Subgroup Analysis with Respect to the Quality of Evidence. Most of our comparison analyses reached a high level of quality of evidence, with a mean Jadad score of 3.87 ± 1.01 (Table 1).9-31 We compared studies with a high quality (Jadad score >3) to those with a lower quality (Jadad score ≤3). The results did not appear to differ substantially. In high-quality studies, the OR for mortality of any cause was 1.60 (95% CI, 0.78-3.30), and in lower-quality studies, the OR was 0.99 (95% CI, 0.42-2.31).

To help address the potential impact of the calendar time, we also compared mortality according to calendar year of publication (before and after 2006). The summary ORs for mortality were both not significant for these 2 time periods (0.80; 95% CI, 0.37-1.76 before and 2.03; 95% CI, 0.91-4.52 after 2006).

DISCUSSION

A recent meta-analysis has underlined the higher risk of overall serious adverse events in certolizumab pegol-treated patients and the significant increase in the risk of serious infections in patients on adalimumab, certolizumab pegol, and infliximab, which might suggest a potential higher risk of mortality.1 This hypothesis has not been confirmed in our meta-analysis, which covered the same time period and compared the 5 currently available TNF-α inhibitors for the risk of mortality, an undisputed hard endpoint. Indeed, the use of TNF-α inhibitors is not associated in our study with an increased risk of medium-term mortality.

Several registries have suggested a reduction of the risk of mortality in patients with rheumatoid arthritis treated with TNF-α inhibitors.32-34 Several factors may explain this discrepancy, especially the exclusion of highly selected patients in randomized controlled trials compared with unselected patients in registries, and the longer time of drug exposure in the latter. This may suggest that registries may be more adequate to address the impact of TNF-α inhibitors on overall mortality. However, our results are consistent with data extracted from the British Society for Rheumatology Biologics Registers and with the meta-analysis of Leombruno.35

Strengths of our meta-analysis are its large sample size, an indirect comparison among the 5 available molecules, the presence of a control group obtained through a process of randomization, the quality of data extracted from a majority of high-quality randomized controlled trials, and the absence of heterogeneity among included trials. Limitations of our meta-analysis included the generalization of our results and the absence of long-term exposition on TNF-α inhibitors. Insufficient data were provided to perform a subgroup analysis according to the duration of use of TNF-α inhibitors. Moreover, effect of TNF-α inhibitors on mortality may occur after discontinuation of these drugs, and this aspect could not be assessed in our meta-analysis.

In conclusion, this meta-analysis shows that treatment with TNF-α inhibitors is not associated with a higher risk of medium-term mortality of any cause in patients with rheumatoid arthritis. These results are reassuring for this duration, given that these therapies are highly effective at controlling symptoms and reducing disability and damage. Further studies are warranted to assess the long-term effect of TNF-α inhibitors on mortality.

References

APPENDIX

Supplementary references accompanying this article can be found in the online version at http://dx.doi.org/10.1016/j.amjmed.2015.07.020.
Appendix 1: References of included studies

mumb, a new human anti-tumor necrosis factor α antibody, administered intravenously in patients with active rheumatoid arthritis: Forty-eight-
week efficacy and safety results of a phase III randomized, double-blind,

2. Emery P, Fleischmann RM, Moreland LW, Hsia EC, Strusberg I, Durez P, et al. Golimumab, a human anti-tumor necrosis factor α monoclonal antibody, injected subcutaneously every four weeks in
methotrexate-naive patients with active rheumatoid arthritis: Twenty-
four-week results of a phase III, multicenter, randomized, double-
blind, placebo-controlled study of golimumab before methotrexate as
2009;60(8):2272-2283.

3. Quinn MA, Conaghan PG, O’Connor PJ, Karim Z, Greenstein A,
Brown A, et al. Very early treatment with infliximab in addition to
methotrexate in early, poor-prognosis rheumatoid arthritis reduces
magnetic resonance imaging evidence of synovitis and damage, with
sustained benefit after infliximab withdrawal: Results from a twelve-
month randomized, double-blind, placebo-controlled trial. Arthritis

4. St. Clair EW, van der Heijde DMFM, Smolen JS, Maini RN,
Bathon JM, Emery P, et al. Combination of infliximab and metho-
trexate therapy for early rheumatoid arthritis: A randomized, controlled

5. Keystone EC, Kavanaugh AF, Sharp JT, Tannenbaum H, Hua Y,
Teoh LS, et al. Radiographic, clinical, and functional outcomes of
treatment with adalimumab (a human anti-tumor necrosis factor
monoclonal antibody) in patients with active rheumatoid arthritis
receiving concomitant methotrexate therapy: A randomized, placebo-

6. Furst DE, Schiff MH, Fleischmann RM, Strand V, Birbara CA,
Compagnone D, et al. Adalimumab, a fully human anti tumor necrosis
factor-alpha monoclonal antibody, and concomitant standard anti-
rheumatic therapy for the treatment of rheumatoid arthritis: results of
STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis).

7. Smolen JS, Nash P, Durez P, Hall S, Ilivanova E, Irazone-Palazuelos F,
et al. Maintenance, reduction, or withdrawal of etanercept after treat-
ment with etanercept and methotrexate in patients with moderate rheumatoid arthritis (PRESERVE): a randomised controlled trial. The Lancet.
2013;381(9870):918-929.

Malaise M, et al. Therapeutic effect of the combination of etanercept
and an inadequate response to methotrexate: double-blind randomised

9. Combe B. Etanercept and sulfasalazine, alone and combined, in pa-
patients with active rheumatoid arthritis despite receiving sulfasalazine: a

10. Smolen J, Landewé RB, Mease P, Brzezicki J, Mason D, Luijtenks K,
et al. Efficacy and safety of certolizumab pegol plus methotrexate in
active rheumatoid arthritis: the RAPID 2 study. A randomised

11. Fleischmann R, Vencovsky J, van Vollenhoven RF, Borenstein D,
Box J, Coteur G, et al. Efficacy and safety of certolizumab pegol monotherapy every 4 weeks in patients with rheumatoid arthritis failing
previous disease-modifying antirheumatic therapy: the FAST4WARD

Combe B, et al. Certolizumab pegol plus methotrexate is significantly
more effective than placebo plus methotrexate in active rheumatoid arthritis: Findings of a fifty-two-week, phase III, multicenter, ran-

13. Durez P, Malghem J, Toukou AN, Depresseux G, Lauwersy BR,
Westhovens R, et al. Treatment of early rheumatoid arthritis: A ran-
domized magnetic resonance imaging study comparing the effects of
methotrexate alone, methotrexate in combination with infliximab, and
methotrexate in combination with intravenous pulse methylpredniso-

14. Lipsky PE, van der Heijde DM, St. Clair EW, Furst DE, Breedveld FC,
Kalden JR, et al. Infliximab and methotrexate in the treatment of

15. Kavanaugh A, Fleischmann RM, Emery P, Kupper H, Redden L,
Guerrere B, et al. Clinical, functional and radiographic consequences of
achieving stable low disease activity and remission with adalimumab
plus methotrexate or methotrexate alone in early rheumatoid arthritis:
26-week results from the randomised, controlled OPTima study. Ann

16. Van Vollenhoven RF, Kinnman N, Vincent E, Wax S, Bathon J,
Atacicept in patients with rheumatoid arthritis and an inadequate
response to methotrexate: Results of a phase II, randomized, placebo-

17. Choy E, McKenna F, Vencovsky J, Valente R, Goel N, VanLunen B,
et al. Certolizumab pegol plus MTX administered every 4 weeks is
effective in patients with RA who are partial responders to MTX.

18. Breedveld FC, Weisman MH, Kavanaugh AF, Cohen SB, Pavelka K,
Vollenhoven Rv, et al. The PREMIER study: A multicenter, random-
double-blind clinical trial of combination therapy with adalimumab plus
methotrexate versus methotrexate alone or adali-
mumab alone in patients with early, aggressive rheumatoid arthritis
who had not had previous methotrexate treatment. Arthritis Rheum.

19. Miyasaka N. The CHANGE Study Investigators. Clinical investigation
in highly disease-affected rheumatoid arthritis patients in Japan with
adalimumab applying standard and general evaluation: the CHANGE

20. Van de Putte LBA. Efficacy and safety of adalimumab as monotherapy
in patients with rheumatoid arthritis for whom previous disease
modifying antirheumatic drug treatment has failed. Ann Rheum Dis.
2004;63(5):508-516.

21. Schiff M, Keiserman M, Cooding C, Songcharoen S, Berman A,
Nayiager S, et al. Efficacy and safety of abatacept or infliximab vs
placebo in ATTEST: a phase III, multi-centre, randomised, double
blind, placebo-controlled study in patients with rheumatoid arthritis

22. Leirisalo-Repo M, Kautiainen H, Laasonen L, Korpela M, Kauppi MJ,
Kaupinen-Seppänen O, et al. Infliximab for 6 months added on
combination therapy in early rheumatoid arthritis: 2- year results from
an investigator-initiated, randomised, double-blind, placebo-controlled

23. Bejarano V, Quinn M, Conaghan PG, Reece R, Keenan A-M,
Walker D, et al. Effect of the early use of the anti-tumor necrosis factor
adalimumab on the prevention of job loss in patients with early rheu-